
Digital Library Federation: Aquifer Project

Portal Architecture Overview
Chick Markley, Systems Architect

February 1, 2008

draft

Architecture
This document is an attempt to make plain the design and construction of the DLF Aquifer Portal. The
project development theme is agility. The project is organic and at times names and constructions are
bound by history and the trail of trial and error. While sometimes we have taken the time to correct the
resulting inconsistencies, often the demands of keeping the system running and continuing to advance
take precedence over devoting the time to going back and cleaning things up. The source code for this
project is available at http://sourceforge.net/projects/dlf-aquifer/.

The rationale for caching a near displayable form of the xml is simple. Records are expected to be
viewed and rendered many times before they are updated. Simple tests of the retrieving randomly
selected records for display point to at least a two-fold improvement in display time.
We rejected

Environment
The architecture of the Aquifer Portal is built upon Ruby on Rails version 1.2.6 (RoR). The RoR
architecture follows the Model/View/Controller (MVC) design pattern and we follow that whenever
possible. This development and production of this application lives lightly on the underlying operating
systems and accesses it directly absolutely as little as possible. Alternative technical strategies such as
Java, PHP, DLXS, Perl were considered but Ruby was settled on both for its purported promise of short
development time and engineering team's feelings that the other platforms, while serviceable, were
complex and less productive than modern programming should be. The team continues to be satisfied
and impressed with Ruby's suitability for a project of this scope and scale.

Project Highlights
 Simple flat view of metadata, wisely mapped from complex MODS format
 SOLR/Lucene works great for digital collection metadata
 AssetAction support provides new avenues for contributor control over digital object usage
 Zotero support through unAPI server
 System exposes data sources and transforms to interested users (digital librarians)
 Distinctive headings allow better machine generated differentiation of collections
 Unseen only filter for registered users presents only new objects across users searches
 eXist parallel database allows full XPATH ad hoc queries of database
 User history features help users and statistics
 Bots and spiders are treated as registered users for statistics purposes
 Ruby on Rails an excellent choice for Websites devoted to digital objects
 Community contributions

 CQL/SRU OSS ruby plugin produced based on Java OSS libraries
 TEMPER/CDL date normalization OSS ruby plugin produced from Java OSS libraries
 acts_as_xml OSS ruby plugin for simplifying library metadata manipulation and

integration with Rails ActiveRecord

Primary Records
The primary function of the portal is to aggregate and make searchable library metadata encoded in the
MODS XML format. This is accomplished via two tables. Incoming MODS data is stored as is in the
table raw_xmls, which has a text column that receives the xml text. The MODS data is converted into
a displayable form via a batch program named raw_xml_to_item that uses an XSL transform to create
an hash of an array of strings. The keys to the hash are a simple list of field tags, the value associated
with each key is an array of one or more strings, i.e. fields for that particular tag.
This structure is serialized via JSON into a text column, data in the items table.

The rationale for caching a near displayable form of the xml is simple. Records are expected to be
viewed and rendered many times before they are updated. Simple tests of the retrieving randomly
selected records for display point to at least a two-fold improvement in display time.
We rejected the idea of storing a full rendered version of the MODS record in HTML in order to allow
greater flexibility in the configuration of display of fields. Administrators can edit the field displays
without having to regenerate the rendered forms. Ordering of fields in displays is controlled by the tags
table which contains displayable labels for the field tags and ordering information for the brief and full
record displays. The XSL file represents an enormous body of work and distilled wisdom from our
Metadata Working Group.
(http://wiki.dlib.indiana.edu/confluence/display/DLFAquiferMeta/Data+Processing)

Note: There are enhancement requests to allow users to configure their own renderings. The structure is
in place to support this but this development is out of scope for the American Social History Online
project.

Indexing
The records are indexed and searched via the apache SOLR/Lucene software. Indices are generated by
the batch program ItemIndexer from the MODS data with another XSL transform. Fields are generated
using the basic text, string, facet and date types available through SOLR. Many MODS elements are
indexed both in a text and facet field. There is a single field 'key_date_d' generated for searching that is
used for user sorting purposes. There is a complex specification of cascading element and attribute
priorities. This ordered list is scanned with a date parser built on the CDL date normalization
utility/TEMPER tools. The first successfully parsed date (there are many unparsable dates such as n.d.)
is then used as a sort date, additional dates indices are also generated including range aware decade and
year facets.

SOLR's faceting technology allows users to break down search results into useful subsets, facet filters
can be iteratively applied and removed within a search. Combining Lucene with the user item history
allows a user to filter out records that a user has seen recently. This feature can operate across the
different searches a user tries, so if a particular search does not turn up anything useful a new query
will not show the same records over again. There is more work to be done with this feature, but it is
very interesting.

Indexing is presumed to be the primary vehicle for user content discovery.

Headings
The headings subsystem contains a subset of the fields added to SOLR indexes. Counts of the number
of times a given heading occurs overall and by collection are kept here. The tables here allow for a
browsing interface in either list form or the popular tag cloud visual metaphor. Either format can rank
headings alphabetically, by frequency, rarity and by their distinctiveness, i.e. how headings in a
particular collection differ from the aggregate collections. Distinctiveness, unlike the other formats
ranks headings by the ratio of the headings occurrences within a collection to the occurrences of the
heading in the database of a whole. The headings sorted this way are very useful in presenting the
interesting and differentiating content of each collection.

Heading access is presumed to be the primary vehicle of search engine content discovery.

User
Site users may optionally register themselves. Registration allows users to configure a few features of
the systems; number of records returned on a page, save search history, etc. The user login uses
OpenID, simplifying the login code. Tables track users’ searches and records retrieved and viewed. A
known list of bots are identified via the USER_AGENT request element and treated as registered users.
The data accumulated in the item_histories table for these users can provide metrics for search engine
coverage of the system.

Collections
The collections table contains MODS records, in both their original xml text and in a JSON
serialization. The serialization used is different than the items table. The approach here preserves the
full MODS hierarchy. It represents an alternate technical approach to rendering MODS records that
might later be incorporated in the items table.

Machine Access
The portal supports access via the unAPI and SRU and AssetAction protocols. unAPI is used to support
the Zotero citation management tool. SRU allows Sakaibrary and other external clients to search and
retrieve records, the CQL parser is a ruby translation of the standard Java CQL implementation, and
includes a first draft of an attempt to provide a generic query mapping from CQL to SOLR.
AssetActions provide a mechanism for contributors to define and control additional functions for a
digital resource. Currently AssetAction support is provided for the Collectus image management tool.

Data and Process Exposure
Whenever possible the portal attempts to pull back the curtains on its inner workings. XML source to
original MODS record is available wherever records are presented. Additionally the XSL transforms
themselves are presented including a simple interface that allows interested users to apply them to
individual records and look at the resulting output. Non-binding edits can be made to the XSL
transforms to check proposed changes.

The portal also maintains a parallel database based on the eXist OSS XML database platform. All
contributed MODS records are added to this database which allows for full add hoc XPATH queries.
This tool proved invaluable during the MetaData Working Group's data processing standards
development. Programmers and Librarians could examine the database from a strict XML viewpoint,
identifying standard usage patterns and problematic coding practices. It was not felt that using the

eXist system was a suitable replacement for the MySQL database, but that could change in the future.
The barriers are about performance concerns and limited development time and not about any technical
programming limitations.

Schema

Controller/Action Summary

 collection

 index

 list

 show

 heading

 group

 index

 list

 sets

 home

 about

 conditions_of_use

 contact_us

 faq

 help

 index

 tools

 my_profile

 edit

 index

 records_selected

 record_viewed

 search_history

 search

 advanced

 full_record

 heading_list

 images

 index

 item

 mods_record

 random_record

 timeline

 transform_record

 sru

 diagnostics

 index

 explain

 search_retrieve

 tag_admin

 index

 list

 unapi

 index

 user_admin

 edit

 index

 list

 show

 update

A controller plus an action forms the base section of the url used for the site. For example to display
the about page the url is /home/about, to display a particular item found in a search the url is
/search/item additional sub-elements and arguments may further target the url to a particular page or
resource.

